• For any query, contact us at
  • +91-9872993883
  • +91-8283824812
  • info@ris-ai.com

    Predict Startup Profit On The Bases Of Data Provided With Multiple Regression

    The competition goal is to predict the profit of startup profit on the bases of data provided which are on the bases of Research and Development Spend(R&D Spend), Administration Spend, Marketing Spend and State. We use multiple regression in this model because we have to predict profit(dependent variable) on bases of multiple field(independent variables) rather then one field just like we done in Simple Linear Regression. This model can help those people who want to invest in startup company by analysing profit of the comapny.

    Firstly, we import necessary library(numpy, matplotlib and pandas) for this model.

    In [1]:
    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    

    Now we read CSV file 50_Startups_with_states.csv It contains data about 50 startups It has 5 columns - "R&D Spend", "Administration", "Marketing Spend", "State", "Profit" The first 3 columns indicate how much each startup spends on Research and Development, how much they spend on Marketing and how much they spend on Administration cost. The state column indicates which state the startup is based in. And the last column states the profit made by the start up.

    In [2]:
    dataset = pd.read_csv('50_Startups_with_states.csv')
    print(dataset)
    
        R&D Spend  Administration  Marketing Spend       State     Profit
    0   165349.20       136897.80        471784.10    New York  192261.83
    1   162597.70       151377.59        443898.53  California  191792.06
    2   153441.51       101145.55        407934.54     Florida  191050.39
    3   144372.41       118671.85        383199.62    New York  182901.99
    4   142107.34        91391.77        366168.42     Florida  166187.94
    5   131876.90        99814.71        362861.36    New York  156991.12
    6   134615.46       147198.87        127716.82  California  156122.51
    7   130298.13       145530.06        323876.68     Florida  155752.60
    8   120542.52       148718.95        311613.29    New York  152211.77
    9   123334.88       108679.17        304981.62  California  149759.96
    10  101913.08       110594.11        229160.95     Florida  146121.95
    11  100671.96        91790.61        249744.55  California  144259.40
    12   93863.75       127320.38        249839.44     Florida  141585.52
    13   91992.39       135495.07        252664.93  California  134307.35
    14  119943.24       156547.42        256512.92     Florida  132602.65
    15  114523.61       122616.84        261776.23    New York  129917.04
    16   78013.11       121597.55        264346.06  California  126992.93
    17   94657.16       145077.58        282574.31    New York  125370.37
    18   91749.16       114175.79        294919.57     Florida  124266.90
    19   86419.70       153514.11             0.00    New York  122776.86
    20   76253.86       113867.30        298664.47  California  118474.03
    21   78389.47       153773.43        299737.29    New York  111313.02
    22   73994.56       122782.75        303319.26     Florida  110352.25
    23   67532.53       105751.03        304768.73     Florida  108733.99
    24   77044.01        99281.34        140574.81    New York  108552.04
    25   64664.71       139553.16        137962.62  California  107404.34
    26   75328.87       144135.98        134050.07     Florida  105733.54
    27   72107.60       127864.55        353183.81    New York  105008.31
    28   66051.52       182645.56        118148.20     Florida  103282.38
    29   65605.48       153032.06        107138.38    New York  101004.64
    30   61994.48       115641.28         91131.24     Florida   99937.59
    31   61136.38       152701.92         88218.23    New York   97483.56
    32   63408.86       129219.61         46085.25  California   97427.84
    33   55493.95       103057.49        214634.81     Florida   96778.92
    34   46426.07       157693.92        210797.67  California   96712.80
    35   46014.02        85047.44        205517.64    New York   96479.51
    36   28663.76       127056.21        201126.82     Florida   90708.19
    37   44069.95        51283.14        197029.42  California   89949.14
    38   20229.59        65947.93        185265.10    New York   81229.06
    39   38558.51        82982.09        174999.30  California   81005.76
    40   28754.33       118546.05        172795.67  California   78239.91
    41   27892.92        84710.77        164470.71     Florida   77798.83
    42   23640.93        96189.63        148001.11  California   71498.49
    43   15505.73       127382.30         35534.17    New York   69758.98
    44   22177.74       154806.14         28334.72  California   65200.33
    45    1000.23       124153.04          1903.93    New York   64926.08
    46    1315.46       115816.21        297114.46     Florida   49490.75
    47       0.00       135426.92             0.00  California   42559.73
    48     542.05        51743.15             0.00    New York   35673.41
    49       0.00       116983.80         45173.06  California   14681.40
    

    Here X is contains all the independent variable and y is the dependent variable("Profit")

    In [3]:
    # Importing the dataset
    X = dataset.iloc[:, :-1].values  #which simply means take all rows and all columns except last one
    y = dataset.iloc[:, -1].values  #which simply means take all rows and only columns with last column
    

    Convert text Categorical variable "State" to Numeric Value

    We use OneHotEncoder to convert state column string data into numeric value in the form of dummy variables. As you can see that state column(on index: 3) is converted into 0, 1 form. If data in column contain New York value it will be repesented as [0.0 0.0 1.0] same apply for California: [1.0 0.0 0.0] and Florida: [0.0 1.0 0.0].

    In [4]:
    # Encoding categorical data
    from sklearn.compose import ColumnTransformer
    from sklearn.preprocessing import OneHotEncoder
    ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [3])], remainder='passthrough')
    X = np.array(ct.fit_transform(X))
    print(X)
    
    [[0.0 0.0 1.0 165349.2 136897.8 471784.1]
     [1.0 0.0 0.0 162597.7 151377.59 443898.53]
     [0.0 1.0 0.0 153441.51 101145.55 407934.54]
     [0.0 0.0 1.0 144372.41 118671.85 383199.62]
     [0.0 1.0 0.0 142107.34 91391.77 366168.42]
     [0.0 0.0 1.0 131876.9 99814.71 362861.36]
     [1.0 0.0 0.0 134615.46 147198.87 127716.82]
     [0.0 1.0 0.0 130298.13 145530.06 323876.68]
     [0.0 0.0 1.0 120542.52 148718.95 311613.29]
     [1.0 0.0 0.0 123334.88 108679.17 304981.62]
     [0.0 1.0 0.0 101913.08 110594.11 229160.95]
     [1.0 0.0 0.0 100671.96 91790.61 249744.55]
     [0.0 1.0 0.0 93863.75 127320.38 249839.44]
     [1.0 0.0 0.0 91992.39 135495.07 252664.93]
     [0.0 1.0 0.0 119943.24 156547.42 256512.92]
     [0.0 0.0 1.0 114523.61 122616.84 261776.23]
     [1.0 0.0 0.0 78013.11 121597.55 264346.06]
     [0.0 0.0 1.0 94657.16 145077.58 282574.31]
     [0.0 1.0 0.0 91749.16 114175.79 294919.57]
     [0.0 0.0 1.0 86419.7 153514.11 0.0]
     [1.0 0.0 0.0 76253.86 113867.3 298664.47]
     [0.0 0.0 1.0 78389.47 153773.43 299737.29]
     [0.0 1.0 0.0 73994.56 122782.75 303319.26]
     [0.0 1.0 0.0 67532.53 105751.03 304768.73]
     [0.0 0.0 1.0 77044.01 99281.34 140574.81]
     [1.0 0.0 0.0 64664.71 139553.16 137962.62]
     [0.0 1.0 0.0 75328.87 144135.98 134050.07]
     [0.0 0.0 1.0 72107.6 127864.55 353183.81]
     [0.0 1.0 0.0 66051.52 182645.56 118148.2]
     [0.0 0.0 1.0 65605.48 153032.06 107138.38]
     [0.0 1.0 0.0 61994.48 115641.28 91131.24]
     [0.0 0.0 1.0 61136.38 152701.92 88218.23]
     [1.0 0.0 0.0 63408.86 129219.61 46085.25]
     [0.0 1.0 0.0 55493.95 103057.49 214634.81]
     [1.0 0.0 0.0 46426.07 157693.92 210797.67]
     [0.0 0.0 1.0 46014.02 85047.44 205517.64]
     [0.0 1.0 0.0 28663.76 127056.21 201126.82]
     [1.0 0.0 0.0 44069.95 51283.14 197029.42]
     [0.0 0.0 1.0 20229.59 65947.93 185265.1]
     [1.0 0.0 0.0 38558.51 82982.09 174999.3]
     [1.0 0.0 0.0 28754.33 118546.05 172795.67]
     [0.0 1.0 0.0 27892.92 84710.77 164470.71]
     [1.0 0.0 0.0 23640.93 96189.63 148001.11]
     [0.0 0.0 1.0 15505.73 127382.3 35534.17]
     [1.0 0.0 0.0 22177.74 154806.14 28334.72]
     [0.0 0.0 1.0 1000.23 124153.04 1903.93]
     [0.0 1.0 0.0 1315.46 115816.21 297114.46]
     [1.0 0.0 0.0 0.0 135426.92 0.0]
     [0.0 0.0 1.0 542.05 51743.15 0.0]
     [1.0 0.0 0.0 0.0 116983.8 45173.06]]
    

    Split dataset into training set and test set

    Next we have to split the dataset into training and testing. We will use the training dataset for training the model and then check the performance of the model on the test dataset.

    For this we will use the train_test_split method from library model_selection We are providing a test_size of 0.2 which means test set will contain 10 observations and training set will contain 40 observations. The random_state=0 is required only if you want to compare your results with mine.

    In [5]:
    # Splitting the dataset into the Training set and Test set
    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
    

    Fit Simple Linear Regression model to training set

    This is a very simple step. We will be using the LinearRegression class from the library sklearn.linear_model. First we create an object of the LinearRegression class and call the fit method passing the X_train and y_train.

    In [6]:
    # Training the Multiple Linear Regression model on the Training set
    from sklearn.linear_model import LinearRegression
    regressor = LinearRegression()
    regressor.fit(X_train, y_train)
    
    Out[6]:
    LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

    Predict the test set

    Using the regressor we trained in the previous step, we will now use it to predict the results of the test set and compare the predicted values with the actual values. We use precision=2 to show only two decimal value after float value.

    In [7]:
    # Predicting the Test set results
    y_pred = regressor.predict(X_test)
    np.set_printoptions(precision=2)
    

    Now, we have the y_pred which are the predicted values from our Model and y_test which are the actual values. Let us compare are see how well our model did. As you can see from the screenshot below - our basic model did pretty well.

    In [8]:
    print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1))
    
    [[103015.2  103282.38]
     [132582.28 144259.4 ]
     [132447.74 146121.95]
     [ 71976.1   77798.83]
     [178537.48 191050.39]
     [116161.24 105008.31]
     [ 67851.69  81229.06]
     [ 98791.73  97483.56]
     [113969.44 110352.25]
     [167921.07 166187.94]]
    

    Here, you can see the Multiper linear regression Graph showing approximately straight line for predicted value(y_pred) and actual value(y_test) of profit column.

    In [9]:
    plt.plot(y_test, y_pred)
    plt.show()
    
    Multiple Regression for Profit Prediction

    Resources You Will Ever Need