Check Marijuana Legal Illegal Status with Python
Marijuana is the most frequently used illicit substance in the United States. In this model , we will Check Marijuana Legal Illegal Status with Python code.
We firstly import necessary library for this project
import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split
Now we read CSV file in which data for legal and illegal marijuana states
dataset = pd.read_csv('state_marijuana_legalization_dataset.csv') X = dataset.iloc[:, :5] y = dataset.iloc[:, -1] print(X)
bachelors_degrees coastline_length population_density forest_cover \ 0 37.9 31 618 37.9 1 30.8 750 222 17.0 2 28.0 6640 1 30.4 3 36.8 130 1218 39.5 4 37.6 96 741 54.7 5 40.5 192 871 52.5 6 34.9 13 148 77.5 7 36.3 112 212 60.7 8 31.4 840 251 17.8 9 32.9 157 107 40.7 10 38.1 0 52 17.5 11 33.7 0 68 28.9 12 31.1 0 36 8.9 13 30.0 28 485 30.0 14 34.2 127 420 50.9 15 27.7 0 10 1.0 16 25.7 0 6 9.2 17 32.3 0 231 11.5 18 31.9 40 1021 50.8 19 36.0 0 67 75.7 20 28.6 0 286 55.3 21 27.6 367 105 7.0 22 27.8 0 106 45.2 23 29.3 0 24 1.8 24 26.7 0 55 5.4 25 30.8 296 41 38.8 26 31.0 0 36 2.8 27 27.0 0 11 3.1 28 23.0 0 26 0.5 29 29.0 228 43 89.0 30 27.5 0 60 4.8 31 28.8 100 177 64.2 32 26.9 0 175 51.2 33 26.1 0 284 28.9 34 24.1 0 184 18.9 35 27.1 0 88 30.3 36 29.5 0 7 20.6 37 27.3 1350 378 42.4 38 24.1 0 57 14.2 39 25.9 0 20 31.8 40 28.4 301 206 59.9 41 24.9 0 160 52.9 42 25.8 187 162 63.8 43 22.5 397 108 49.2 44 26.3 0 17 5.6 45 22.3 0 112 48.6 46 23.5 53 95 70.6 47 19.2 0 76 77.2 48 21.1 0 57 55.1 49 20.7 44 63 61.9 per_capita_income 0 36338 1 29736 2 33062 3 37288 4 39373 5 36593 6 34691 7 34052 8 30441 9 31841 10 32357 11 32638 12 24877 13 30488 14 33095 15 33071 16 29698 17 30417 18 30830 19 29178 20 29220 21 27125 22 28213 23 27446 24 28361 25 27646 26 27870 27 26959 28 25773 29 27978 30 25715 31 25615 32 26613 33 26937 34 25140 35 26126 36 25989 37 26582 38 25229 39 23938 40 25774 41 24922 42 24596 43 24800 44 23683 45 23684 46 23606 47 22714 48 22883 49 21036
Using train set method by RandomForest model for classification
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) model = RandomForestClassifier() model.fit(X_train, y_train)
/home/webtunix/.local/lib/python3.5/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22. "10 in version 0.20 to 100 in 0.22.", FutureWarning)
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=None, oob_score=False, random_state=None, verbose=0, warm_start=False)
Take input value from user
print("ENTER THE VALUES TO CLASSIFY MARIJUANA IS LEGAL OR NOT: ") a=int(input("bachelors_degrees: ")) b=int(input("coastline_length: ")) c=int(input("population_density: ")) d=int(input("forest_cover: ")) e=int(input("per_capita_income: "))
ENTER THE VALUES TO CLASSIFY MARIJUANA IS LEGAL OR NOT: bachelors_degrees: 37 coastline_length: 31 population_density: 618 forest_cover: 37 per_capita_income: 36338
y=[] y.append(a) y.append(b) y.append(c) y.append(d) y.append(e)
test = [] test.append(y)
Make empty list and append data in it.
We make another list in which we append all the input list
We predict the model by passing the list.
result = model.predict(test)
Now, we check the result. If the result is one then that state is legal for marijuana and if the result is zero then that state is ill-legal for marijuana.
if result==[1]: print("marijuana is leagal") else: print("marijuana is ill-leagal")
marijuana is leagal
We use RandomForestClassifier model because it's depend upon probability as it occur in between 0 and 1